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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-6

THE THEORY OF MOMENTLESS SHELLS OF REVOLUTION®

By V. Z. Vlasov

§1. Basic equations of the theory of momentless shells of revolution. By a

momentless shell, we mean a thin-walled three-dimensional structural shape, whose
natural, unloaded state is described by any given surface, and which does not

show resistance to bending deformation at any point. Only tangential (normal and
shearing) stresses acting parallel to the middle surface can arise out of the inter-
nal forces in a momentless shell, The intensity of these stresses is distributed

uniformly across the thickness of the shell,

Let the shell be defined by a surface of revolution whose equation is r = 1(z),
where z is the coordinate along the axis nf revolution, and I is the radius of a

parallel (Fig. 1).

In this case, the equations of equilibrium and extensional deformation of

the middle surface of the shell of revolution have the form
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Here Ny, N, and § are components of the tensor describing the stress state in
the momentless shell (Fig, 2). AuV'»lvf{-A(irT)E; A is a coefficient in the first quadrartic

form of rhe surface. pg, py . and py are components of the surface load vector.

*Translated from: TIzv. AN 5S8R, OTN, no. 5, 1995, pp. 55-8k.



€1, €3, and w are the componcents of membrane strain in the shell; u, v, and w are

components of the toral displaccment vector of a point n the middle surface of

the shell (Fig, 3).

For any assigned surface loading, the internal stresses in the shell of revolu-
tion are determined by the static equations (1.1)., The positive sense of these

stresses is indicated on Fig., 2.

For any assigned m.mbrane strains, the displacements of a point in the middle
surface of the shell are detcrmined by the geometric equations (1.2), The positive

sense of these displacements is shown on Fig. 3.

§ 2. Homogeneous equations for momentless shells, Let us examine the problem

of the equilibrium and bending of a momentless shell under the assumption that
the right members of equations (1.1) and (1.2) are equal to zero. Setting
Pg = Py “Ppp = 0. we have the homogeneous, static stress equations describing the

equilibriun: of a momentless shell in the absence of a surface load:

F) , as
z(rN,)—rN,—{— A $=0
aN,
kD)
—~'FN+ N, =0

(2.1)

A% L 35 45 =0

Analogously, considering the tangential

strains in the shell, €,, €5, and w to be
Fig, 2, equal to zero, we have a system of three
lincar homoguencous cquations for the displacements u, v, and w, of points in the

middle surface of the shell.

O
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(2.2)

Bending de ‘'ormations of an incxten-

F4

sible surfacce ar, in fact, described by
Fig. 3. .

these ecquarions., In terms of the flexural
strains Ky, Ky, and 7, an infinitesimally small bending d formation of the surface

of revolution can be described also by the equations
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obtaincd on the basis of the static-geometric analogy from the equations of

equilibrium (2.1) by replacing N, by Ky, Ny by K,, 2nd S by 7.
Equations (2.3) are identical with equations (2.1).

Each of the individual systems of differential equations (2,1), (2.2), and
(2.3), which pertain to three different problems for arbitrary shells of revolution,
can be reduced to a system of gwo differential equations in two unknown functions.
Introducing stress functions, displacement functions and strain funcrions into the
investigation, and making usc of the methods of the static-geometric analogy as
set forth in the monograph [1]%, we can reduce each of the three systems of
c¢quations in such a manner thar this system will have one and the same form for

all three of the problems. We represent this system in the following form:

i 1 U i 1 9U; .
Wi 1 e 1 =12, 9.4
mtmp =0 /T =0 (=123 (2.4)

Here U; = U; (z, 8) and Vi =V;(z,8) are the new unknown funcrions. The index i
assumes the values 1, 2, or 3, according to the number of the problem, described
by cquations (2.1), (2.2), or {2.3). Let us assume that equations (2.4) together

with the funcrtions determined by it with i = 1 are equivalent to equations (2.1);

with i = 2, to equations (2.2); and with i = 3, to equations (2.3).
In accordance with this choscn system of enumeration, we have these formulas

for the unknown funcrtions of the original equations (2.1), (2.2), and (2.3):

" 1
Ny=2v, N=Zv, s=2%U,

A (2.5)
1 _ _ A, r

u—_——A—U:,v v=1rV,, w_rTa_z_7U’ (2.6)
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"2:'r_V" xlzsz, 1:r—2(/2 (2.7

Hure, as before,
dr dtr
— 7z — [—_ KR

A=V147r7 r=r(z), rt=—_, r=

with formulas (2.5), cquations (2.4) are equivalent to cquations (2.1); with for-

mulas (2.6), to cquations (2.2); and with formulas (2.7), to equations (2.3).

‘_ﬁl.':ﬁj appears to be a typographical error for [8) ~ Translators note.



Equations (2.4) are likewise reduced to a single d fferential equation of
second order by introducing, for cach of the three protlecms, one of the auxiliary

functions F; (z,8) according to the formulas

This ¢quation, associated with formulas (2.8), has the form
2R, " 2F.
(ZTF;“'T(F”L%#): (2.9)
Here F; = F;(z, 8) is the fundamental function sousht for. Depending on the

character of the problem, it is either a stress function for the momentless shell,
or a strain function for the inextensible surface, or, finally, a displacement

funcrion.

Formulas (2.5), (2.6), and (2.7), determining the stresses, displacements,

and bending deformations take on the following form:

A 0F, Pk - aF,

M=% Ve=Z =T (2.10)
_ Ak, L , ii(,:@iz) rie ok,

U=~ V=Tag 2 v=—mzlr; 1 oz (2.11)
A 0F, . r’ oF, o 0F,

T T T f= e (2.12)

Here Fyp is a stress function, F, is a displacement finction, and Fg is a strain
funcrion. With this modification, each of the problems, pertaining to the equili-
brium and bending of a momentless inextensible shell, is described by a single
differential equation (2.9) and its associated appropria ¢ static or geometric

boundary conditions.

§3. Elliptic_and spherical shells, In our previous papers 1, 2], it was shown
that if a shell is formed along a quadric surface having positive Gaussian curva-
ture, i.c., along a surface which is convex everywhere ;ellipsoid, sphere in a
special casc, paraboloid, hyperboloid of two shects), then the equations of
equilibrium of the momentless shell, and consequently also the cquations of bending
of the inextensible surface, can by mecans of the apprcpriate transformation
be reduced to the Cauchy-Riemann cquations of the theory of functions of a

complex variable, or, vquivalently, to the single harmoenic cquation

Po Po, =0
da? T gt T

(3.1)



Here B is the angular coordinarte,

and « is determined by the formula

I'4
(Fig. 4)
r b+ z
2 «=In -b—__—z‘

The index i can, as before, take on
Fiu. 4, all three of the numerical values 1, 2,
and 3, corresponding to the three problems here examined simultaneously, Sub-

stituting for elliptical shells into the formulas (2.5), (2.6), and (2.7)

a . a
= r'=——sha
I'=tha’ b
d?r ach’a Vit - Yy T2
e GE T T TE A=VI+() =5 V¥ + a’sh*a
. . . . a2 qui . a‘?; o e .
and identifying the functions [, =g V= o (t-=1,2,3), we obtain
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(3.3)

(3.4)

By means of formulas (3,2), the internal tangential specifications of the stress

state in the momentless, elliptrical shell, Ny, N, and S, are expressed in terms of

the partial derivatives of the harmonic function ¢;. This function, which with the

sclected coordinates has the dimensions of force, is thus a stress function.

The formulas (3.3) determine, through partial derivatives of another function

¢y, all threc components u, v, and w, of the total displacement vector of a point

in the incxtensible middle surface of an elliptical shell, arising as a consequence

of the bending deformarions of this surface. The function entering into these

formulas can be called the harmonic displacement function of the elliptical shell,

Finally, all three componcnts of the strain tensor in the case of infinitesimally

small bending deformarion of the clliptical surface, are determined by the last

group of formulas (3.4). The formulas for these components have the same form

* In this paper *th' ='tanh,” *ch’ ='cosh," "sh’ = 'sinh’ ~ Publisher.



as the formulas (3.2)., The function ¢g is the fundament:.1 harmonic flexural strain

function of an elliptical surface of revolution.

Setting b = a in formulas (3.2, 3.3, 3.4), we obtain as a special case, the

fundamental formulas for a spherical shell:

S ST Tt 4 e, % — 1 pal® (3.3)
NX—TCh ax, S_TCh“?E‘ Nz_—T(\haoa
? LI
x,=-:-ch’adai’, ::-:'—chga%%", "lz‘“TCh'“% (3.6)
__a 99 o a O, o 09y O,
=haop V= e YT T %558 athax a8 (3.7

§4. The hyperbolic shell. All of the fundamental fcrmulas for a hyperbolic

shell can be obtained from the corresponding formulas for the elliptical shell
examined above, by replacing the actual semi-axis of the ellipse, b, by the
imaginary semi-axis of the hyperbola, bi, and « by «ai. In place of the harmonic
equations (3.1) for the fundamental functions ¢; (i = 1, 2, 3), we now have the

wave ecquation; . ~
d'rpi d'q;i

A Y g =0
ot a3* (4.1)
Substituting into formulas (2,5, 2.6, 2.7)
‘ﬂ ! 1 Y r03? T 3 oo
e T 2’5'”1- rre= l*‘*;i. :, A - -:'—lfb-»+-a- sinx

and cxpressing the functions U; and V; in these formulas through rthe partial

derivatives of the appropriate functions ¢; of the wave equation (4.1), we obtain

v 1 R e T T o . ’ o O
No=- cosa} IF | a¥sin’x R S = costx -
ab o [ Jf
(4.2)
N it cosd o o,
N, Sl o T
- b ViET ateint 2 Y2
a* 1, PR
W oo e — NS R L — v
| atsinta A vos 3 dx
a Vb Carsint e 0, } al, sinx O (4.3)
w = T L L
b oS % o4 by Tt it 9B
1 - s dey
*yioom cosa ) 6 , Teo costa 5
a cos’ a oy (4.4)

X’ - ———————— -

PV s 0

By means of these cquations, the unknown functions of the homogencous equa-
tions (2.1), (2.%2), and (2.3) for a hyperbolic shell of neyjative curvature, arc ex-
presscd in terms of the partial derivatives of three functions ¢ (i = 1, 2, 3), ecach

of which satisfies the wave equation (4,1),



§ 5. Boundary value problems in the theory of equilibrium and bending of

shells of revolution. 1. Let us examine the problem of equilibrium and bending

of elliptical and hyperbolic shells, limited in height by the planes z = z; and
z = z, (Fig. §). In this case, the height of the shell in the direction of the z
axis is

=24z (5.1)

At the edges of the shell, the independent variable o has the value

a) for elliptical shells;:

, «, = arc sh—=1 (5.2)
b o2—z2
b} for hyperbolic shells:
. 2
®, = ArC 81 ———— s 5,3
! Vo4 oz ( )

Let us seek a solution of equations (3.1) and (4.1) in the form of the simple

trigonometric series:
. N
¢ (o, 3) = 2/;”(1) cos ng, W (%, 3) - 21»“\" (x) cos np (5.4)
We obrain the following formulas for the coefficients in these series:

Jin(®) = Ainshno - Binchna,  gig (@) = Cip sinnx 4= I, cos nx (5.5)

Here Ay, By, Cjp» and Dip are constants of integration. Substituting from
(5.5) into (5.,4), we obtain
-
g (2, ) = Z(;lmshna b B chonx) cos nf

Wi (a, 3) = Z (Cin sin na +4- 13, cos nx) cos nf (5.6)

In this way, these formulas represent the general solution of the fundamental
cquations for e¢lliptic and hyperbolic shells — of the harmonic equation (3.1) for

elliptic shells, and of the wave equation

T (4.1) for hyperbolic shells.
Z z,
‘**" ‘ The index i, as before, can take
Z, .
f’ L on all three of the numerical values 1,
2, and 8, corresponding to the three dif-
4
ferent problems (one static and two geo-
Fig. a.

metric),

Calculating the partial derivatives with respect to o and B8 from the functions

(5.6) just found, and then substituting these derivatives into the right members of
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the gencral equations (3.2), (3.3), (3.4), (4.2), (4.3), aud (4.4), we obtain solu-
tions in the form of simple series for all of the unknowr static and geometric
quantitics pertaining to the two shells. All of these sol tions are correctly de-
termined up to the constants of integration of the corre:ponding problem. These
constants must be found in each special case from the boundary conditions, which
are given at the edges a = oy and a = o, to the extent of one condition throughout

cach edge for each of the three problems.

In the casc of the purely static problem, we will assume that both the elliptic
and hyperbolic shells are supported by flexible diaphragms at the edges o = o,
and a = o,, e¢ach acting only by forces lying in the plares of these diaphragms,
and forming, together with the shell, a single three-dimensional closed system.
With regard to external forces, we will assume that the shell is acted on by
vertical edge loads, applied along the edges o = oy, a = oy, and given as a function
of the angular coordinate B8 along cach edge., With regard to the whole shell,
this load must be a system of forces in static equilibriun. The action of the
cdge loads described here is expressed through the trans nission to the shell, at
points along the edges a = a; and o = a,, of normal stresses Ny, directcd along
the tangent to an appropriate meridian, and which are tiemselves given functions
of 8. In accord with the requirem:nts of the momentles: theory, the radial com-

poncnts of the vertical load must be balanced by the pline diaphragms,

According to the first of formulas (3.2) and (4.2), the solution of the static
problem described here reduces to the determination of stress functions ¢ and
¥y, periodic in 8, whose partial derivarives with respec: toa must yield a given

function of 3 alonyg the parallels a = oy and o = ay.

In the case of the purcly geometric problem of the letermination of the dis-
placements, we shall assume that at tae edges of the shell, o = oy, a = a4y, there
arc only tangential displacements, given in magnitude as functions of 8. In
accord with the general formutas (3.3) and (4.3) for the displaccments y, the
problem reduces also in this case to the determination of periodic functions ¢,
and ¥,, whose partial derivatives with respect to o must take on the values of a

given function of B along the parallels ¢ = oy and o = o,.

In ¢xamining the other geometric problem, pertainiig to the pure bending
(without stretching) of the surface, we shall assume that this bending is specified
by giving, as functions of 8, the flexural deformations k4 along the cdges of the shell

o = ay and & = a,. This boundary value problem has a complete analogy with the
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purely statfc one formulated above; and the solution of this problem reduces to
finding the functions of infinitesimally small bending deformation, likewise
periodic, which are designated as @g(a, 8) and ¥g(a, 8) for elliptic and hyperbolic
shells respectively, and whose partial derivatives with respect to a at o = oy and
o = oy must yield a given function of 8 in accordance with formulas (3.4) and

(4.4) for K,.

Thus, for all three of the problems stated here, with the indicated boundary
conditions, the auxiliary functions ¢j( a,8) of the harmonic equation (3.1) for
clliptical shells and ¥i(a,B) of the wave equation (4.1) for hyperbolic shells,
must be constructed such that the partial derivatives of these functions with

respect to o at a = oy and o = ap, reduce to given funcrtions of 8.

Represcnting these given functions for each of the three boundary value
problems conforming to the genceral formulas (3.2-3.4, 4.2-4.4), in the form of
trigonometric series in cos n@, and then imposing the boundary conditions in-
volving the derivatives with respect to a of the fundamental unknown functions,
we obrain systems of linear, algebraic cquations for the coefficients of the trigo-
nometric sceries (5,6). For the nth term of the pertinent series, these equations

have the following form:

a) for elliprical shells

Anichna; + Bpishna, = % Pni
y 1
AniCh”“2+BnlShnai=ani (9.7)
b) for hypcerbolic shalls
. 1 . 1
CnsCOS"GL—DmSH\"fll=Tri,,, Chi COS nay - D,isinna, = —n‘sm (5.8)

As the number of the term in the pertinent trigonometric serics, the index n
can here take on any integral valuce; the index i designates to which one of the

above-described separate problems equations (3.1) and (4.1) refer.

With 1 =1, equations (5.7) and (5.8) will refer to the purely static problem
of the cquilibrium of momentless shells having, at the cdges o = oy and a = a,,
diaphragms in the form of ¢lastic membranes, and sustaining given normal stresses

N, at the edges a = a; and a = a,.

With i = 2, we refer equations (5.7) and (5.8) to the purely geometric
problem of infinitesimally small bending of shells with tangential displacements
Y given at the edges o = ay and a = o,. Finally, with i = 3, these equations per-
tain to the infinitesimally small flexural strains of shells with flexural strains

given at the cdges a = ay and a = a,.
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Yor each index n (n =1, 2, 3, ..,), and for cach of the three problems indi-
cated above, the right members of ¢equations (5.7) and (5.8) will be known quanti-
ties, proportional to the coefficients of the trigonometric series for the pertinent

function which is given at the cdges o = a; and a = a,.
Solving cquations (5.7) and (5.8), we obtain:

a) for elliptical shells

{ Ppshnay - - q,. shnay { 9y chrayg--p, chnay
-"m = ——— T, I} m = N I 5.9
n sha(a, + xy) n shon(x, + a,) (5.9)
b) for hyperbolic shells
Coo 1_ Spy SiN ARy -— 7 o sin na, = 1_ i cos.na, rL; COSnay (5.10)
™ sin A (o) - - ay) ’ " n Sinn (2, -— x,)

With given quantities Ppi+ d (n =1, 2, 3 ..., 1=1, 2, 3), these

ni’ 'ni’ *ni
formulas determine, generally speaking, 2ll the coefficients of the trigonometric
series (5.6), and consequently also the sought-for functions @;(e,8) and Vi(a,8)
for all three different problems of ellipric and hyperbolic shells, However, a

more det-iled analysis of formulas (5.6) shows that hypersolic shells of negative
Gaussian curvature, both in regard to the momentless stress state and also in regard
to their infinitesimally small bending, differ in princip e from elliptical shells,
which are sholls of positive curvature, It is clear in for nulas (5.9) thar the
determinant of the system (5.7), sinh n(a; - «,), with a; # a, cannot become zero
for any of the values n =1, 2, 3, .... With civen finite Pni and Ayir the coef-
ficicnts A,i and Bni thus take on complctely definite firite values, Hence, it
follows that with the system of boundary conditions indi:ated above, the harmonic
funcrion pila,B) admits a completely determined, and, moreover, unique solution,
both in the case of the purely static problem, and also i2 the two other cases of
purcly geometric problems. In the case of the homogenc us boundary value
problems, i.e,, in the absence of normal stresses, tangen ial displacements, and
flexural strains at all points along the cdges of the shel , we will have the trivial
zero solution for all three harmonic functions. As applicd to the static problem,
this mvans that if the elliptic shell, supported by plane membrancs at the edges

a = ay and & = «,, carries no load whatsoever, then the internal stresses in this
shell are everywhere equal to zero., A momentless, incxtznsible elliptical shell

in the presence of planc sheare diaphragms ar its cdges is a three-dimensional,

*In the terminology of some American authors, a "shear diaphragm” is taken ‘o represent an edge member whose
rigidity within its own plane is infinite, but zero with respect to displacement normal to that plane — Translator's note,
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statically determinate system. Static indcterminacy of such a shell can occur as
a consequence of an excessive number of conditions pertaining to its edges. This
indeterminacy can be resolved by examining the extensional strains of an elastic

shell, which depend linearly on the internal tangential stresses,

As applied to the gecometric problem, an elliptical inextensible shell whose
edges, a = a;, oo = og, in the presence of shear diaphragms, cannot undergo any
deformations in the planes of these diaphragms, is also, like a closed, inextensible
sphere, a three-dimensional rigid surface. Infinitesimally small bending deforma-
tions of such a surfacec arc impossible. Thesc bending deformations are possible

only if an c¢dge of the shell does not have any constraint.

Analyzing formulas (5.6) pertaining to the hyperbolic shell of negative curva-
ture, we scc that the determinant of the system (5.8) can become zero for certain

values of the argument n(ay ~ o). These values are determined from the equation
n(xy —ay) = m= (5.11)
in which m and n can take on any integral values.

with given loads, displacements, and flexural strains at the edges o = oy,
o = o, of a hyperbolic shell, the coefficients Cphij and Dy of the functions ¥i(a,8)
of the wave cquation can take on infinitely large values. In the absence of the
indicatcd boundary valucs, formulas (5,6), together with (5,9) furnish an indeter-
minite solution for the functions ¥, of the wave equations, As applied to the static
problem, this means that a hyperbolic shell of the Shukhov tower design, having
"shcar diaphragms™ in the form of flexible but incxtensible membranes at the
o * oy, @ = &y, in contrast to the elliptic shell, permits solutions for the internal
stresses which are not only zero, but also different from zero, in the absence of
any c¢xternal load. And indeced, this also constitutes the static criterion of the
infinitcesimal geometric variability of momentless shells of negative curvature,

first ¢xpressed in reference [(6) and in monograph [8].

The purely geometric method, bascd on the notion of the sraric-gcometric
analogy, and proposed in the previously referred — to monograph [1)*, is in com-
plete agreement with this criterion,

We also obtain dircet confirmarion of this method from the solution prescnted

here, In fact, referring the wave function ¥, determined with coefficients (5,10)

*The [1] appears to be a typographical crror for [8] — Translator's note,
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of formula (5.6), to the purely geometric problem, and supposing (in the case of
the homogenecous boundary value problem) the displacerients v; and the flexural
strains K, at a = oy and @ = «, to be equal to zero, i.e., assuming that the
hypcerbolic shell, as well as the elliptical shell examined above, is constrained
at the edges o = oy and o = a, by diaphragms which are rigid in their planes, we
have indcterminate, non-zero solutions for this functior., These solutions arec ob-
tained from formulas (5.8) with fni = 0, sy = 9, and with the fulfillment of
equation (5.11). This analysis shows that a hyperbolic thell of negative curvarture,
examined as an inextensible surface in the presence of shear diaphragms at the
cdges of the shell (each diaphragm freely deforming on'y out of its plane), can
admit infinitesimally smail bending deformations, in ccntrast to the similar

elliptical shell,

All of these bending deformations, and the possible non-zero stress states
which correspond to them in the sense of the static-georictric analogy, are described
correctly to within constant multipliers by particular, 1nstable solutions of the
wave cquation, being, in fact, fundamental solutions of the homogenecous boundary
value problem for this equatien, and having a mathema ical analogy with the
problem of natural longitudinal vibrations of an c¢lastic rod. These unstable cigen-
solutions of the wave equation are associated with those terms of the series (5.6)

for which, in accordance with (5.8),

sina(x —o,) =0 (5.12)
Hence, we have:
T
R
n (5.13)
Here m and n are arbitrary, mutually independent vhole numbers (m, n =
1, 2, 3, ...). Formula (5,12) can also bec written in the form
. . mT
sin(x, - %)= sty —— (5.14)

Expressing the quantities oy and «, in rhis cquatior in terms of the coordinatcs

of the c¢dges of the shell zy and z, by means of formula: (5.3), we obrain

(5.15)
If the relative coordinates gy = 2z,/b, g4 = 2,/ b arc¢ now introduced for the
edges of the shell, then cquation (5.15) hecomes
m= (5.106)

J— s
V(i

"



Those relative dimensions for which the wave equation of the appropriate
static or geometric homogencous problem will have non-zero solutions are de-
termined by equation (5.16). These critical dimensions bounding the shell along

the axis of revolution can be called the critical heights,

Giving different integral values to the indices in formula (5.16), we will
have, for the critical heights of the hyperbolic shell, an innumerable multitude
of values which together form a spectrum of cigen-values for this parameter of

the homogeneous boundary value problem.

If the plane z = 0 is a plane of symmetry for the shell, then formula (5.16),

with a shell height of 2h, goes over into the following:

(5.17)
2bh . mw®
B TSI
Hence, we find
b 14 cosmn/n
sinmw/n
(5.18)

Since the quantity m/n <1, with integral values of m and n, is a rational
number of the unit interval (proper fraction), then hence it follows that for hyper-
bolic shells of negative curvature, there exist infinitely many values of the critical

height h. Scrtting, in particular, n = 1, we obtain h = .

This result shows that for shells of finite height, the first term of the series
(5.6) will always yield a definite and, morcover, unique solution — different from
zero in the case of the non-homogenecous problem, and zero in the case of the

homogencous problem.

This means that a hyperbolic shell loaded on the ends by normal forces dis-
tributed according to the law cos 8 or sin B, and reducing to a single bending
moment with regard to the whole cross section (higher order moments corresponding
to the remaining terms of the series n = 2, 3, 4, ..., are equal to zero), is a rigid
system, and the internal stresses in the cross section of this system are distributed

according to the law of plane sections,
Serting n = 2m, m =1, 2, 3, ... in formula (5.18), we obtain h = b,

Hence, it follows that if the half height of the shell is equal to the imaginary
semi-axis of the hyperbola generating this shell, then all the even numbered
terms in the trigonometric series (5.6) will yield particular, unstable solutions

taking on infinitely large values when the corresponding right-hand terms of
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~quation (5.8) arc different from zero, and indeterminate solutions with the right-

hand terms ¢qual to zero,

With n = 3m and m =1, 2, 3, ... , formula (5.18) for the critical height h

gives two values: h = v3b and h = V3b /3

With these values, the terms of the series (5.6) with the numbers n multiples
of 3(n =3, 6,9, ...), will yield infinitely large values for the unknown quantity
in the case of the non-homogeneous boundary value problem, and indeterminate

values in the case of the homogencous problem,

Sctting n = 4m, m =1, 2, 3, ... , in formula (5,1¢), we obtain two new valuegs

for h: h = (v2 + 1)b and h = (V2= 1)b,

With these values of the height h, the special terms of the trigonometric
scrics (5,6) will be associated with terms whose indices are multiples of 4(n = 4,

8, 12, ...).

All the reso of the infinitely many values for the critical height h can be

obtained from formula (5,18) in similar fashion.

We note that to the nth term of the series (5.6) fer the critical height h there
corresponds not one, but (n-1) values., Thus, for example, for the fourth term of
the series (5.6), formula (5.18) gives three values for h: h = b, h = (Y2 + 1)b, and
h = (V2—- 1)b.

The first of these values is obtained with n = 2m ind m = 2; the two others

with n = 4m and m =1,

2. We now cxamine the homogeneous boundary value problem of equilibrium
and bending of a closed symmutrical shell consisting c¢f three shells: two end
e¢lliptical thells and one middle elliptic
or hyperbolic shell (Fig, 6). We will
assume that tte geometric dimensions
of the end ell ptical shells are such that
there are comnon tangents to the meri-
== dians at the jinctions of these shells with
z " the middle sho1l, In other words, we as-
sume that the closed shell of revolution,
Fig, 6. in each of the two cascs illustrated in
Fig. 6, is obtzined by rcvolution of an

appropriate compound curve, not having corner points at the lincs of contact,
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In the interest of simplicity of computation, without reducing the generality
of the solution of the problem, we will examine only states of stress and bending
of shells which are symmetrical with respect to the plane z = 0, as shown on Fig, 6.
In this case, when formulas (5.6) are applied to the middle shell, all terms which

are e¢ven functions of @ drop out, The formulas assume the form:
!pi=2.4l.“ sh na cos nf, Y, = ZCmsmnm(‘nsnﬁ (5.19)

Both of these formulas pertain to the middle shell of height 2h, The harmonic
function for a middle elliptical shell is determined by the first of these formulas,
The second formula gives the function satisfying the wave cquation for a middle

hyperbolic shell, The indepcndent variable a in formulas (5.19) can range

h
from a = — arc sh ——— to o =aresh ——_——
Vs — a2 Vit = p2

in the casce of the c¢lliptical shell, and

from o = —- arc <in 1o o = arc sin

ok
Vir i it

s

‘1127*-771?
in the case of the hyperbolic shell.

Applying the fundamental functions ¢j and ¥;, which are determined for the
middle shetls by formulas (5.19), to the static problem, we have these formulas

for the stresses Ny and S:

a) for an ¢lliptical shell

1 1 T T o o\ . .
Ny = —"—b—cha}/h- —+-a*sh* a }_Jn.tl,.(huambn[i (6.20)
o, . R
= --poosta Z nd, sinnxsinnj

b) for a hypcrbolic shetl

1 T IEPTIWT
N1=Tb—msal/b‘-—a‘sm‘a ZnC,.msnacosnB (5.20"

1 . .
S =— Frns’ aZnCnsm nasin n3

Since formulas (5,20) pertain to a symmetrical state of equilibrium, then in the
sequel we can limit our examination to either half of the shell, for ¢xample, the

lower.

The harmonic function describing the stress state in the end elliptical shell
must be constructed such that it is regular at all points of the eilipsoid, including

the pole, This condirion is satisfied by the following funcrion:

¥ = D An'e " cosn} (5.21)



Here Ay is an arbitrary constant for the end elliptical shell, n is a positive

integer (n =1, 2, ..,), & is the independent variable for this shell, ranging in
the cxtremes from a' = ay to a' = w. The cordinate valuc ay corresponds to the
line of contact of the e¢nd she¢ll with the middle one. The value o' = @ corresponds

to the lower pole of the Tnwer end etliptical shell,

We have the following formulas for the internal stresses Ny and § of the

lower cnd clliptical shell:

N'= - ;% cha' Vi 4 a'?sh o Zn.‘in’e'"“‘ cos n3 (5.22)
1 . A
S = h—r(-h'-’u' }_‘JnA“'r”"’ sinnd

Here the primes indicate that the appropriate magritudes pertain to an c¢nd
elliptical shell. Since¢, according to the conditions of the problem, the closed
shell of revolution has common tangents to the meridian curves along the parallels
of contact of the end shells with the middle one, then the stress state for the
entire compound shell must be such that the internal ncermal stresses Ny and shearing
stresses S satisfy continuity conditions at points along the lines of contact of the
middle shell with the end ones, in the absence of any extecrnal load along these
lines, We will have two murually independent boundary conditions at the lines of

contact;:

N - ¥ a0, S—8=0 (5.23)

Here Ny and S pertain to the middle shell, and are calculated from formulas
(5.20) in the casc of the elliptical shell and from formuilas (5.20") in the case of
the hyperbolic shell, In these formulas, the independent variable o is in both cases
to bc assigned the value ay, corresponding to the lower-most parallel of the middle

shell,

The stresses Ny and § in equations (5,23) are com uted from formulas (5.22)
for the lower end elliptical shell, with the coordinate alue a' = a4, which

determines the position of the line of contact of this stell with the middle one.

Applyinyg the conditions (5.23) to a shell which has positive curvature cvery-
where as shown in Fig, 6, and taking into consideration the fact that the meridians

of the joincd shells have a common tangent at the poin of contact, we obtain:

%—ch a, chna, A, +£,—chal'e"‘“n';ln’ = p, (5.24)

1 i .
— T)—ch2 ayshny A + Fch’ ae "' A =q,
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Here 2 and b are the semi-axes of the ellipse for the middle (central) shell;
a® and b" are the semi-axes of the cllipse for the end shells; Ay and A’ are un-
known coefficicnts of the series (5.19) and (5.21); pp and d, arc arbitrary terms
which depend on the external load and are proportional to the nth term of the de-

composition of this load into a trigonomctric scries.

In the case of two elliptical shells joined along a linec of contact having a
radius r = 1y, we have cheay = a/rl and cheay = a'/ry. By virtue of these relations,
cquations (5.24) become:

A chna; + A 'e=na’ = r p
a? ya? —na,’ 2
——A"Tshna‘ + 4, e =rtq, (5.25)
We obtain the following general formula for the determinant of these equations,

pertaining to an arbitrary nth term of the trigonometric series:

A,.=($chna1+ab—’shnal}e""°-' (5.26)

In the casc of the elliptical shell being examined, the quantities a, b, ay,
b, and n enrering into these formulas can take on only positive values. Hence, ir
follows that the determinant Ap of equations (5,25) cannot reduce to zero for any
value of the index m. Consequently, with assigned arbitrary (right-hand) terms,
cquations (5,25) furnish completely detcrminate values for Ap and Ap'. In the
case of no load, all the coefficients Ap, Ap' of the trigonometric scries (5.19)

and (5,21) will vanish.

A thin-walled closed system consisting of shells of positive curvature (Fig. 6)
is, like a closed spherical or elliptical shell, a three-dimensional, geometrically

stable, and statically determinate system.

Making use of the method of the static-geometric analogy, and replacing N,
and $ by Kk, and 7 respcctively in the preceding equations, we arrive at the con-
clusion that the closcd compound shell having positive curvature cverywhere,
which is under considcration here, cannot have flexural strains in the absence of
membranc strains, Such a shell, considered as an inextensible surface, is a rigid

three-dimensional system.

Let us now examine a closed shell having negative curvaturce in its middle
part, and consisting of onc hyperbolic shell and two clliptical shells (Fig. 6).
Let a and b be the semi-axes of the hyperbola for the middle shell, and let a’

and by’ be the semi-axes of the ellipsec for an end shell, Writing out the staric
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boundary conditions (5.23) with the help of the general formulas (5.20') and (5.22),
recognizing also that the meridian segments of the complete shell have a common

tangent at the point of contact of the hyperboloid with the ellipse, we obtain:

i An’ —na,’
Cn~-cosa, cos na; -+ < tha/e " = p, (5.27)

.

1 A
— Cn 5 costa sinna, + —b—," ch?a)/e—ne' = g,

Here Cp and Ay' are unknown coefficients of the series (5,19) and (5,21);
pp and q, are arbitrary terms, which depend on the external load and reduce to
zero in the case of no load. By substituting cosay = a/ry and cosh a, = a'/ry

(where ry is the radius of the parallel at the junction) w: obtain:
, . a® . ‘2 .
Cpcosnay + Ape ™ = r p,, —C,,B—sm nx, + A,.Ib—, e—nea = rfq,1 (5.28)
We obtain the following formula for the determinant of the system of cqua-

tions (5.28)

»

a! a?
Ay = e (b— cos na, + -—sin nal)

It follows from this formula that for a shell of the given type, there exist
relative dimensions for which the dererminant Ay has the value zero for positive
integral valucs of the index n, For the values of noy which cause the dctermi-
nant An to vanish, we obrain the cquations

b 1 "
tgnal:—:,T or alz—n—arctgfwi—% (5.29)

Here m and n are any positive whole numbers,

With given dimensions a, b, a', b* of the compound shell, and with arbitrary
intcgral valucs of the quantities m, n =1, 2, 3, ... , the formula (5.29) gives

infinirely many critical values of oy.

Since the quantity oy is determined by the position >f the line of contact of
the middle shell with one of the end shells, according to the formula cos oy = a/r,
which puertains to the hyperbolic shell, then infinitely many values of the para-
meter oy correspond to infinitely many such lines of con act, along which the
equations of equilibrium, and consequently also the equations of bending of the
compound shell e¢xamined here, will have unstable solutions. In contrast to a closed
clliptical shell, a closed compound hyperbolic shell can permit infinitely many
mutually indepcendent shapes of infinitesimally small bending deformations., These
bending deformations, like the possible shapes of equilib:ium momentless states
under no load which are analogous to them, arc explaine:d by the presence in the

shell of a part with negative curvature,
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3. If a shell is described by revolution of a scgment of the curve
rr:d(('us—; - A sin 71') (5.30)

not intersccting the axis of revolution Oz (a and XA are certain constant quantities),

then cquation (2.9) goes over into an cquation with constant coefficicnts

*F, 1 Zaran
o b (Fi + '(,;52") =0 (5.31)

This is an equation of the c¢lliptic type. Expressing the B-dependence of
F(z,8) as an ordinary trigonometric series in which the coefficients are functions

of z, we obtain, from (5.31)

Fi(a, B) = 2<An£sh‘—""a_i +B,.¢ch‘V";_i })cosnﬁ (5.32)

Here n, for the shell of revolution can assume the value of any integer, and
Api and By are constants of integration in the nth term of the series (5.32). The
index i picks out onc of the three problems (2,10), (2.11), or (2.12) to which the

fundamenral function F; can refer,

Analysis of the problem described here shows that a shell of revolution with
meridian given by cquation (5.30) belongs to the class of shells of positive
Gaussian curvaturc. These shells possess the same properties which were also

cxamined in the above c¢lliptical shells,

4. Let us now examine a shell of revolution with the meridian given by the

equation
=a(ch = +ish 2
r=alc ;-{-—s ;) (5.33)
With arbitrary values of the paramcrters a and X, these shells represent shells
of negative curvature. In particular, with
z
r=ach- (5.34)
we will have a shell whose middle surface is gencrated by a catenoid.

Using (5.34), equations (2,9) assume the form:

FE, A [ Oy
W“F(ﬁ‘+a*gs=,)*()

This equation is of the hyperbolic type. Upon representing it in the form of

a single trigonometric series, the function Fij(a,B) assumes the form

Fi(a, B) = E(C,ﬂ sin Z— YV n2—1+4 Dyicos ai Vn”~1>w cosn3



ticre, as before, n is an arbitrary whole number, and C, and Dn are constants

of integration.

By applying the above-outlined method of static and geomctric analysis to a
shell of the class (5.34), we arrive at the conclusion that, as shells of negative
curvaturce, these shells are essentially different from shells of the elliptic type,
and can admit particular, non-zero solutions both in the case of the homogeneous

static problem, and also in the case of the homogeneous geometric problem,

5. Let us examine still another class of shells, generated by revolving, around

the axis Oz, the algebraic curve
re=AQG-ap (5.35)

Here A, a, and g arc parameters of the curve, Since all of these parameters,
including also the exponent p, can take on any real valies (integral, fractional,
rational, irrational, positive, or negative), then equaticn (5.35) embraces an

extremely wide class of shells of revolution. Differentiating (5,35), we find

U okl
z—a’ (z — a)*

For the curvatures of the surface, we have the formulas

P pla—tr
(L +ryh (z—a) (L prt 2 — 3
— 1 p— 1
2 ~r(1~r")'/‘— P+ p2rtfz - - a)ryts

For the Gaussian curvature, we now obtain the formala

. _ #e—1)
K=kk, = — (z—aP [t + uriqz — a)?]

It follows from this formula that the sign of the Gaissian curvature of the

surface depends only on the exponent y of the meridian curve (5.35).

As a conscquence of this, we caun divide surfaces, grnerated by revolving the

curve (95.35), into threce types:
a) Surfacvs of positive curvature (paraboloids of different order)
K>0 0<p <)
b) Surfaces of negative curvature (hyperboloids of different order)
R <0 (1< p<CO)
¢) Surfaces of zero curvaiure

If:(), It:;”, n =



For shells with surfaces of the class examined here, the fundamental equations

(2.9) assume the form:

£F w—1) fotF .
‘ .,,%‘,,er_ﬂ<‘1L+1‘>:n (5.36)
For shells of positive curvature, this cquation will be of the elliptic type,

and for shells of zero curvature, of the parabolic type.

Intcgrating equation (5.36) by expanding F(z,8) as a trigonometric series in
the angular coordinate 8, with coefficients depending only on z, we obtain,

1+pn 1 ¥

Iz, §) = 2(:1,. A A )n-nsn;’t (5.37)

Here p, is a characteristic number, depending on the index of the nth term
of the series (5.37) and on the cxponent of the meridian curve (5.35), and deter-

minced according to the formula:

s V1 Aue D 1) (5.38)

Since, for shells of revolution, 0 can assume integral values, then it follows
from formula (5.38), that the quantities p, will be real numbers for shells of

positive curvature, and imaginary numbers for shells of negarive curvature.

Determining all of the fundamental static and geometric quantities from the
genceral formulas (2,10, 2,11, 2.12), and applying the method of initial functions
proposed by the author in refercnce [1], we can, in this way, examine a whole
scrics of new problems in the theory of equilibrium and bending of shclls of the
class examinced here, and develop new rational engincering shapes for engineering

construction.

Let us examine a shell of revolution of timited height. The constants of
integration A, and By of the general series (5.37) arc determined by the boundary
conditions, which must be given along the cdges z = z; and z = z, to the cxrent of
one static condition and one geometric condition all along the edges. In the static
problem of the equilibrium of a momentless shell, the boundary conditions will

pertain cither to the normal stresses N; or the shear stresses S,

In the geometric problem of the bending of an inextensible surface, the
boundary conditions will perrain, in accordancce with the static-geometric analogy,

eithur to the flexural strains K, or to the twisting strains 7.

Assuming, as before, that the shell has ®shear diaphragms® in the form of

flexible, inuxtensible plates at the transverse bounding edges z = zy and z = 24,
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we will have a system of two homogencous ¢cquations fer the coefficients A and

B, in the casc of the homogencous boundary valuc problem.

b R —1—pp —1+pg —1—pga

Anz, 7 4 Bnz, 7 =0, Anzg 2+ DBz, 2 =0 (5.39)

Equating the determinant of the system (5.39) to zero, we separate out that
class of shells for which the equilibrium shape fafls to show uniqueness. Such
shells, considerced as inextensible surfaces, arc thin-walled, geometrically variable
systems, which permit infinitesimally small bending deformations, even in the
prescnce of transverse, inextensible diaphragms at the bounding parallels z = z,

and z = z,.

In this way, we obtain

An = ri [(%)'/m"_ (j_;)lmn] =10 (5.40)

ETE

Sincec, according to the conditions of the problem, z; # z,, then cquation

(5.40) becomes

YePy

by »
(?) ’ (?;_) =0 (5.41)

Equation (5.41) for Pp yields infinitely many imaginary roots, and these roots

are determined by the formula

2

= T (5.42)
Here m can take on the valuc of any whole number .m = 1, 2, 3, cea )

It follows from formulas (5.38) and (5.42) that equ:tion (5.36) will be satis-
fied only with p<0 and p)l, for all shells of negative cirvature, for which the
fundamental differential equation (5.36) is of the hypersolic type. The particular
unstable states of stress and bending deformation of suc! shells, explained by
their negative Gaussian curvature, will occur for terms >f the series (5.37) having

n determined by the formula

mn

H .
fu 5 Viep—hm—1)~1

Since m is any whole number, it follows from this ti1at there exist certain
relative dimensions zy/2z, for which a given shell can have infinitely many cigen-
shhapes of equilibrium and bending, Such shells will belc ng to a thin-walled
geometrically variable three-dimensional system, as shown in the monograph [1)*,
There are infinitely many degrees of geometric variabil ty of thesc systems, As

pointed out in the monograph [1)*, the design of such sh :1ls ought to proceed in

*The [f]— appcars to be a typographical error for [8)— Translator's note,



accordance with a bending theory, The bending and twisting moments arising from
an arbitrarily assignecd load in shclls of negative curvature are not of a localized

naturce.,

For shells of positive curvature, cquation (5.36) is not satisfied for any real
value of o This means that the determinant of the equations, (5.40) cannot
become zero with 8 p€1. Hence, it follows that shells of positive curvature, in
the presence at the edges z = z; and z = z, of *shear diaphragms", inextensible

in their planes, are stable, statically determinate, three-dimensional systems,

Indeterminacy in the solution of the static problem for shells of positive
curvaturc can arise only as a consequence of static indeterminacy in the con-
straining conditions at the c¢dges of the shell, i.c., in case the shell, along an
edge or part of an edge, is also constrained
from vertical displacement, resisting a

movement of the edge out of its plane,

As has been repeatedly pointed out
by the author, moments in shells of positive
curvature have a regional, localized
character. These moments can be deter-

mined in accordance with our general

enginecering theory of shallow shells.

Fig. 7. 6. Let us now examine a shell of
revolution consisting of two spherical

shells, Let the radii of these shells be ay and a,. The radius of the parallel
scrving as the line of contact of the two shells is here designated by r,. We de-
signate by y, and y, the angles berween the axis of revolution Oz and the tangents
to the meridians of the shells at points along their line of contact, The positive
sense of these angles is indicated on Fig., 7. The origin for the axial coordinate
z for cach of the two shells will be chosen in the geometric center of the ap-

propriatce shell,

Let us first examine the problem of equilibrium of the compound closed shell
under the assumption that the angle ¢ = y; — y, between the tangents to the meri-
dians of the two joined shells has a positive valuc, Writing the equilibrium con-
ditions for an infinitesimally small element of the shell in the neighborhood of

the line of contact, we obtain:
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BN 0N, gr
S,+sm-“a—s'—(5,+smT,—d—B—)=—qa—TB— (5.43)
cos ¥V, —cos Ny = —q,
Huere 8y, Ny, $p, and N, arc the shear and normal stresses directed along the

meridians for shells 1 and 2 respectively;

g:=¢03), ¢=4q ) 75 = gp(d)

are components of the external load per unit length, applied along the line of
contact, and given as a function of the angular coordinate 8. Of these compo-
nents, q, is the component acting parallel to the axis Oz, qr is the component
dirccred along the radius of the joining parallel, and qq fIs the component direc-

ted alonyg the tangent to this parallel,

The static boundary conditions necessary in the momentless theory, per-
taining to points along the common line of contact of the two shells, are expressed
by cquations (5.43). Wce will assume that the compound shell examined here is
acted on by forces applicd only along the line of contast, These forces, repre-
sented in cquations (5.43) by the linear loads Az, 9. ard qg, must be a system of

forces in static cquilibrium when the entire thin-wallec system is considered,

With these conditions, the harmonic functions for the two spherical shells must be
selected such that the internal stresses determined by tiese functions have finite
valucs everywhere, and go to zero at the poles of the stells — the lower pole being

in shell 1 and the upper in shell 2,

Applying the scries method as in the case of equarions (5,31) and (5.36), and
subjecting the harmonic functions to the above-formulazed conditions of regularity

at all points of the shells, we obtain

s E Ay mmecosnB, oz, - Eb’,.f”"u‘ s nf (5.44)

Here o is the independent variable for the lower slell (shell 1) and o is the
independent variable for the upper shell (shell 2); n is he number of the term in

the appropriate scrices, taking on arbitrary positive inte sral values,

The harmonic function ¢; for the first shell of radits a, is determined by the
first of formulas (5.44). The independent variable o in this formula can range
between the limirts

“1n . »
arc sh . DR N N

otz
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Here z,), is the axial coordinate of the line of contact, measured from the

center Op of the first shell.

The harmonic function ¢, for the sccond shell of radius a, is determined by
the second of formulas (5.44), The independent variable a, in this formula ranges
between the limits

— 00 < %3 <L arcsh

Here zy, is the axial coordinate of the line of contact, reckoned from the

geometric center O, of the second shell,

For the shell shown in Fig. 7, with y;>0Q and y,>0, both of the quantities Zyk

and z,x have negative values (the axis Oz is directed down).

Wce have the following formulas for the inrernal shear and normal meridional

stresses of the two shells:

a _ L] Na,
N,=— r,‘“f ZA,,ng na cosnd, Ny = P ZA,J'C'“ cosnf
a _ 0 . Oy nay o (5.45)
S, = r:’ EB"M nxgin g, S, = o ZB,,nc = sin nf.
The coefficients Ay and B (n =1, 2, 3, ..,) must be determined from the

boundary conditions (5.43). Representing the right members of these equations by
appropriate trigonometric scrics, we obtain a system of two simultancous linear
equations for the coefficients Ay and By, associated with the nth term of the

serics (5,45).

r2
. h
o . . k . )
a,{(1 —nsiny)e "= 4, 4+ a, (1 + nsiny,)enst By, = " Iy
2
—nak o pnak e
a; cosye muk 4, a, cos etk By = - n (5.46)

Here ay, and a, are the radii of the joined shells, Ty is the radius of the com-
mon line of joining, and P and Q, are coefficicnts of the appropriate trigono-
meutric series for the right members of equations (5.43). With the right members
of cquations (5,43) assigned as functions of 8, these coefficients have completely

determinate values.,

The unknown coefficients A, and B, of the trigonometric series (5.45) will
have completely determinate valuces if the determinant of equations (5.46) is
different from zero for every positive integer n. The gencral formula for this
determinant has the form

An = a,a,e"Ca= =00 [nsin (5 — 7,) + cos 7y + cos 7|



Tt is clcar from this formula that the compound shell being examined can be
designed according to the momentless theory for arbitrary loads, subject to the

condition that the quantity

Cn=nsin(y, —7,) + cosy, 4 cosy, (5.47)

does not become zero for any positive integral value of n. This will be the case
when the angle of contiguity ¢ = y,~y,, between rthe tangents to the arcs of the

two circles at their point of contact does not have a negative value,

If this angle of contiguity ¢ = yy— y; at the point of contact of the two
circles has a negarive value (Fig. 8), then the determiaant of the system of
cquations (5.46) can beccome zero. These particular uns;table solutions will occur
if the right member of the equation

COS vy -f- cO8Y,

T TG 40

is a positive integer,

As an appendix which provides great insight into the problem considered here,
we shall assume that the junction of one shell with the other is accomplished with
the help of a third shell described by part of the surface of a torus with arbitrarily

small radius. In other words, we assume
d that mcridians of the two joined spherical
" shells are smocthly connected without

corner points, >y means of circular arcs of

arbitrarily small radius, In such a geo-

metric interpretation, the angle of con-

Fig. 8. Fig. 9.
tiguity ¢ =y, y,, together with the
curvature of the parallel at the junction,
determine the local value of the Gaussian curvature of the surface, referred to an

elementary strip at the transition from one shell to the other,

It follows from formula (5.47) that the shell shown in Fig. 7, and charac-
terized by the fact that the Gaussian curvature in the reighborhood of the junction
has a positive value y, ~ y;>0, is a rigid, thin-walled system, not permitting any
bending in the absence of stretching. The shell shown .n Fig. 8, having negative
curvature y, ~y1<0 in the neighborhood of the junctior, with the angles y; and
y: giving positive integral values for n in the formula [5.48), is, according to the
momentless theory, an unstable, geometrically variable system, permitting in-

finitesimally small bending.
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If the trigonometric quantitics in formula (5.48) are expressed through the

basic dimensions of the joined shells, then we have

a; + a4,

h (5.49)

n =

Here ay and a, are radii of the shells, h is the distance along the axis of
revolution between their centers O and 0,. In accordance with the above exposition,
formulas (5.48) and (5.49) properly refer only to those shells for which the local
curvature at an arbitrarily small e¢lementary strip of the junction has a negative

value,

For the symmetrical shell shown in Fig. 9, we have

n = 2a d

==
It follows from this formula that rhe ¢xamined symmetrical shell with nega-
tive curvature in the zone of the junction will have particular, unstable solutions

in all those cascs for which the distance h between the centers of the shells is

contained an integral number of times in the diameter d,

In the special case in which h = 7%d, we obtain n = 2, This means that for the
given shell, unstable shapes of equilibrium and bending will be associated only
with the sccond term of the appropriate trigonometric series. In such a shell,
infinite stresses arise from a momentless seif-equilibrating load corresponding to
the sccond term of the series, distributed along the parallel according to the law

cos 28.

One should note that the shells examined here, having negative curvature
only alonyg certain lines, in contrast to shells of the hyperbolic type with negative
curvaturc over the surface, can, with given dimensions, have only one degree of

frcedom of geomertric variability, and not an infinite number.,

§ 6. Conical elastic shells. 1. The middle surface of a conical shell is re-

fecrred to the coordinates z and 8.

The angle B will be considered positive when it is clockwise looking at the

shell along the positive z axis (from the top down in Fig. 10).
We have the following formula for the radius of a parallel of the shell:
r=r +ztgy (6.1)

Here 1y is the radius of the parallel ar z = ¢, and y is the angle betwcecen the
z azis and the gencrators of the cone. This angle will be considered positive if

the radius r of a parallel increases with an increase in the coordinate z.
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z z Z
Cig. 10, Fig. 11, Fig, 12, Fig. 13,

In the sequel, we shall use the following abbreviated notation for trigono-
metric functions of the angle Y.
s =sin7, ¢ = cos v, t=1g- (6.2)

The theory of elastic equilibrium of a momentless conical shell is described

by the differential equations

a4 1 a8 a .\ |

(PN + T‘;ﬁ A4 p =0, Sy U8 kg -0 (6.3)
Au ' 1 du v\ _ L0 bv
e T TR T T (T ) = g 0 (6.4)

The conditions of rangential equilibrium of an element of the shell are ex-
pressed by the first two equations. In these equations, S = S(z,8) is the shear
stress; N = N(z,B) is the normal stress associated with the stretching of the shell
along the gencrators (Fig. 11); p and q are components of the surface load di-

recred along a gencrator and along the tangent to a parallel,respectively (Fig. 12)

The relations between the stresses and the strains for the elastic shell are
cexpressed by the third and fourth cquations, in which the strains for a particular
shape are determined by the derivatives of the displacements, and the stresses by
the internal forces, In these cquations, u = u(z,8) and 7 = v(z,B8) are the tangential
componvnts of the total displacenment vector of a point, directed along a genecrator
and along the tangent to a parallel, respectively (Fig., .8); E is the modulus of

vlasticiry; z is Poisson's ratio; and h is the thickness o the shell,

The normal circumferential stress is absent in cquations (6.3) and (6.4). For
a conical shell this stress is casily determined as a quairity proportional to the
normal component of the surface load. If this componert is equal to zero, then

the circumferential stress will also be cqual to zero.

In the sequel, we shall examine the problem result-ng from equations (6.3)
when the surface load is absent. We will have a system of four homogeneous

cquations in four unknown functions.
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In order to obtain a gencral integral of equations (6.3) and (6.4), we will
make usc of the method of initial functions which we proposed in the theory of
shells, According to this method, the
tangential stresses Ny and S; and the tan-
gential displacements uy; and v, along an
initial parallel z = 0, considered as func~
tions of the angular coordinate 8 along
this parallel, are taken as fundamental
factors determining the stressed and strained

state of the momentless shell. The positive

dircctions of the stresses Ny, S; and the

Fig, 14.

displacements u;, v

i along an initial

parallel z = 0, and along any other, z = const., arc shown in Fig. 14,

With p = q = 0, we will have these general formulas for the unknown functions

of cquartions (6,3, 6.4);

Si=(2) 8.4 (6.3)
M= 2-N— 2 (1= 250 8)

Ehuy = B+ -in ()N @+ 5 (12— )5 @)

,
8]
N _r 1 r ' oy

Ehvy = = Ehv, +T(1 _r—‘) Ehu,’ + :_;(1 —~ ]1):—));’\1 @) +

r 1 r " 14y r r
G R I ) IR N KR NS

s r r

In the teft members of these formulas stand rhe unknown quantities Sy, Ny
Ehuy, Ehv . which pertain to any parallel z = const, (see Fig. 14), and which are

functions of the two coordinates z and B.

The index k indicates that the quantities determined by formulas (6,5) per-
tain to points along a parallel with running coordinate z, The radius of this

parallcl is denoted by r,

[n the right members of equations (6.5) stand quantities pertaining to the

initial functions $,, Ny, Ehuy, Ehvy; and their derivatives:

. ds, v dS, AN, . duy
S’—da' Sl_Tglv N1—75-. "A_dﬂ
As quantitics determined for points of the initial (fixed) parallel z = 0 (the

radius of this parallcl is denoted by ry), these functions and rtheir derivatives

depend only on the single angular coordinate 8. With r = ry, the formulas (6.5)
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o, (6.10)
IU{=——6F

Making use¢ of the formula thus ob-
tained, we record the value of the bending
moment acting ‘n the ring, expresscd in

terms of the targential displacement:
Eli(a'vi ap‘) (6.11)

= ]
i

M=—ZFta

Further, taking advanrage of the

Fig. 16, second of the gincral formulas (6.6), we
express the derivatives of the shear forces, transmirtred »y the shell to the ring in

terms of the normal forces:

. s, .2 S 47
kY N i417141 i+17441 A
fipl = — ‘+l"ri(’i+1_’i) ro— 7 i, i+ 612,
(6.
. iy 3o
Siia=—N 4 —mmm+ N, i ———
i, i-1 W T S — )

Introducing the value obtained for the bending moment (6.11) and the shear

forces (6.12) into the sccond cqguation (6.9), we ohrain:

Ny il — Niiating + g = 0

EI, & 3 Py, PN, iy BN
w () e e gE s s+ 6.13
rt L 0B p B (6.13)
2 ~2
Siyv1 Tiga N Sit17i41 N. . R N,
* T T R CEER T +
5¢Ti— CACTPR P

+

— Ny i + + -5 =0
e
In addition to the ecquations of ¢quilibrium, the coniitions of continuity of

the strain must be fulfilled in the neighborhood of cach ring., The latter con-
ditions arc obrained by equating the displacements of the ring and the two adjoining
conical shells a thceir place of joining to

the ring,

bd \ ) Using Fig., 17, we can write;:
Ve
‘ w=—1—(u cosY,, —u ,  CO87,)
i sing " i— i1 i1 Ts
17
o4, Diffecrentiating this formula once

with respect to 3, replacing the radial
displacement by the tangential in accordance with formula (6.10), and introducing

the previous abbreviared notation for the conical angles we finally obtain the
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Here the determined quantities standing in the left members of the cquations
pertain to arbitrary points of a parallel with running coordinate z; quantities
designated by the index 1 are the initial funcrtions and their derivatives, which

pertain to points of the parallel z = 2y, and depend only on the single coordinate 8.

2. Let us cxaminc a system of conical shells, stiffened at the junctions by
rings (Fig. 15).

As before, we refer the middle surface of the shell to the cylindrical system
of coordinates 2z and B. In order to obtain the differential equations of equilibrium,
taking into account the cffect of the ring on the two neighboring momentless
shells, we separate an clement in the neighborhood of one of the rings by the
lines 8 = const. and b + dB8 = const. and wc replace the discarded parts by forces
(Fig. 16).

The cquilibrium conditions of the scparated element of the ring take the
form

2(z)=0, Ni iptin — Ni i+ i =0

aT
2@ =0, g‘ + Qi+ ri{Si, 141 — S, 1) + g =0
2(r) =0, %—Ti'*"i([vi. 1418141 — Ny imas) + rigir =0 (6.8)

aM,
ZM)=0, 5 +@=0

1

Eliminating the forces Q; and T, from the obtained system,

Niipatim— Ny i€y + g2 =0

1, M, PN, PN
_;,—’(7[37+1)0—{3' + Sita ang — S ap: L+ (6.9)
985 iy 955 i, #q;, | O
t—% T @ %t =0

Let us express the bending moment arising in the ring in terms of the radial
displacement:
EI (#;
M= (50 +w
ERYY
If we neglect the deviation of the tangential strain from its original tangential
direction along the ring's line of contact with the shell, then the radial displacc-
ment w can be expressed in terms of the derivative of the rangential displacement

according to the formula
8



bccome an identity, showing that the quantities Sy = S3(8), Ny = Ny(B), uy = uy (8),
vy = v4(8), playing the role of arbitrary functions of B in the integration of the
basic cquations (6.3, 6.4) with p = g = 0, are the initia’ functions. The stressed
and strained state of a conical clastic shell is determined in a unique manner by
these functions and their derivatives, as we see, In particular, setting r = rp in
formulas (6.5), we obtain values of the stresses and displacements for points along
the lower parallel of fixed radius ry (sce Fig., 14):

Si= (2@, N=2N— (1 2 SG) (8:6)

r, S
1 ’ ,
Ehu,:Ehul+%ln(:—:>1\'l(3)+’—;,—( ——:—;—In’_—:)s1 (13

Ehv, = 2% Ehv, + %( — A)Ehu,' + :_:(1 _ Ty 111%>N,'(3) +

I 8}
r r r . g 1+ ; r .
+ (S E + L (E - )G

If the stresses Nyp(B), S,(8) and the displacements u (B), vy(8), pertaining to
the lower parallel r, are taken as the initial functions of 8, then formulas for the
stresses Ny(B), 5y(B) and the displacements
uy(B), vy(B) at points along the upper
parallel will b. obtained from formulas
(6.6) by interct anging the indices, 1 by
2 and 2 by 1.

By means of formulas (6.6) there is

established, in this way, a well-defined
mutual correspcndence between the tan-

pential stresses and displacements along any two parall:ls of the shell,

Setting r = ry + tz in formulas (6,5), and then passing to the limit as y = 0,
we clearly obtain also, by the method of initial functicns, general formulas per-

raining to « cylindrical shell with radius r = const.
These formulas will have the following form:
. . z—x P
$,=35,, Ny=N, :_‘,,_Isll(n‘

(z--

Ehuy = Ehu, +(z —2,) N, (3) + 25 g (5 (6.7)

2r

Ehoy = Etw, — C20) ppyr o C0E v gy

2r

(z—zp

T TS[”(S) L2001+ 9+ )8 (3)



equation of continuity of the strain in the following form:

Ciprll iy — ClL iy + v singi=0
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(6.14)

Further, using the fourth of the general formulas (6.6) from the method of

initial functions, we express the longitudinal displacements in terms of the

tangential displacements and the normal forces, and substitute into (6,14):

[+ s C s F. e, s r.

4174 141 70— 17141 1 Y
“r,»v.-_,—( — Iy b g singy —
r—r, iy r i

80T Picy i1 r Fily o TiTigy " Ni—l.i
rertnto s lg T ) e —
P i i -1 S i — i i—1 O
Ty )N{_4—1
i1/ Ehy
Ty )Nl. i1
rip Fhiyy
N Pig1 G (r‘ + T iy in r )NHI.‘
(rg—r)e \ 2 2 =i i) Ebgy,y

14+ (ry + r‘_l) RN
+ (r‘ — r‘_‘\ B’I‘ SS (rl—lN(—l, i ’(Ni, l—l) dB -

49 04+ rig) € 84,
T T g By §(N+1N«+n. i — TN ) dg =0

[n order to solve the equations obtained,

functions Ni, defined by the formulas:

l, “"l
b i
N(Al,i = € ’ N‘_ul = G
i—1 i
NSy N, "
‘ i+1
N( t = ¢; — + — N = Cj -_—
=1 i+l 9ipr (SR ite 7
[ ¢y Tix 'H—l Cit1 +1,2
Then, denotin the coefficients of the unknown functions
a sing b KR
W= — iy il =
i i
NGamiag Sis1 S Tig fit1 Sireminn
b = . I — ' /’\.iH:-—, —
(R i~ T i i41
s Cio1 Ci41 (’i“"".‘-u "ty In 4 )
ol = - - - -_—
(ri—ri ) xilzhi 2 ri—riy Ty
»
s i—1 41 (3’a i Ty )
it s T T T - —
(r 7rl'*l) s'iEhi 2 < i it1 Figr
riH'J (Jri r2
(rg ~ i) sikh 2 PR
G Cig Ty Tivy " 75
Sivinn = s e — Tt = In
ity BAG 84y 2 T 4 Figa

(6.15)

we introduce into the investigation,
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) i G S

tijioy = (s~ r, D ER;
b A9+ ) e B s UG+ ) of 5y,
i (ry = ri ) ERy ri -rip) Ergyy
t R ) e Sy
Ci= :
vt (g —ri ) Ehy gy
FoS. w ror.o .8 it s
17 Vi1 "
), = S NI L 9.+ ‘1 )‘ e T i TR0 1)
: i) Gy T ‘
2 P\ 9
—«————lll—v—>ﬁ— -
i i/ PR
TiTipy i \ 9z, 41
In ) E
TR Mg/ By

(b v (r 4 /TN B A A gq:i dB—“ ) G ;,i“ri_HS Q:'ivldﬁ

Fi i Sy

we obtain a system of two cquations of the following form for cach junction of

the shells:

El, , " " it ,
T,‘(d—p—, +1)’vi + auN" + 2 baNy' + Pi=0
ki1 (6.16)
+1 41 i1
— Qv — Z binvn + Z Sal¥y' + Z twN:+ Qi =0
[t Ri1 ki)

If the shell has a structure which is inextensible in its tangenrt plane, then

the quantitics Q1' Sine and tin reduce to zero, and ¢qua ions (6,16) are simplified:

g1 1 RS '
‘.T‘ (;,%’. + 1)1 w"+aulNT D) balN + Pi= 0, —a”— 3 ban=0 (6.17)
N kg K =il

In the absence of stiffening ribs at the joints of the shelis, the system of

equations (6.17) hreaks up into two inde-

w pendent system: :
\ i

alNS+ X balNy + Pi=0 (6.18)

h=ai—1
A -
' g aypy” ~- R Z bﬂkvk =0 (6.19)
=i—1

Equations 6,18) and (6.19) have a
similar structure, which is a conscquence

Fig. 18. of rhe static-geomertric analogy.



By way of an e¢xample, let us examine two conical shells (Fig, 18), not
having a reinforcing ring at the junction, and constrained at the ends by inexten-

sible "shear diaphragms®:

rn=ry fa=7% ElL=0 N =Ny=0, 2,=0,=0

$i0 73COS Yy© stn yycos
b" — Y2 Y1 + Ys Yefa __ N

sin
(= ry— 1y r,—r $a

@y, = — SiN 3y,

Substituting the cocfficicnts obrained into equations (6.18, 6.19), we obtain
two identical equations for the static function N, and the geometric function v,

respectively, which appears as a conscquence of the sratic-geomectric analogy:

v o rn . L r Lo _
(N ""%_r,—_‘T,(Nz').S“'%:”' vy sm-pg—rz_'r| vysingg =0
or cancelling sin ¢,, we¢ obtain
" r 9 " r
W) = RV =0,y = e =0 (6.20)

With ry > rq, the integral of c¢ither of cquations (6.20) has the form:
v, = C,sinnp

where n is determined by the relation

=0 or ry= —r
Pa— 2 kAt

The radius ratios for which n takes on integral values will correspond to

different shapes of geometric variability of the shell,

Thus, with r, = 3r,/4, n = 2, and the shape of the geometric variability is
characterized by bending deformations of the shells along rheir line of contact,

following the law v, = C; sin 28, where Cy is an arbitrary constant.
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